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The kinetic equations for various fractions of the dispersed phase of a polydisperse sus- 
pension and the system of dynamic equations defining the motion of the suspension as 

a set of interpenetrating continua are formulated. It is assumed that the suspension is 
“collisionless”, i.e. that its particles interact largely by way of the random velocity and 

pressure fields in the dispersion medium. The relations characterizing the structure of 
the random pulsations of the suspension phases (“pseudoturbulence”) are considered with- 

out allowance for the derivatives of the dynamic variables describing the mean motion. 

This makes it possible to obtain the dynamic equations in an approximation analogous 

to the Euler approximation in the hydrome~hanics of single-phase media. The equations 
of pseudo-turbulent particle energy transfer which close the system of dynamic equations 
are written out in the same approximation. 

A hydrodynamic model of a polydisperse suspension which adequately describes its 
mechanical behavior in the continuum approximation can be constructed by a natural 
generalization of the method already applied to a monodisperse suspension (e. g. see 
p]). To avoid repetition, many of the concepts discussed in detail in the case of a 
monodisperse suspension are used here without further explanation. For clarity we begin 
with the case where the disperse phase can be represented as a collection of a finite set 
of fractions. The results thus obtained are then extended to suspensions with continuous 
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particle distributions. 
Let us consider the particles constituting Indistinct fractions suspended in a fluid of 

viscosity l.r,, and density d,. We denote the radius, density, and volume of a particle of 
the j th fraction by aj , dj and ~j ,, respectively (the index j here and below denotes the 
number of the fraction : j = 1,2,. . , N). We shall also make use of the specific volume 
of a particle in the suspension and its “associated” volume, i. e. the fluid-filled part of 

its specific volume. 

We introduce the velocity w(j) of some particle, the velocity and pressure v(i) and 
pj of the fluid in its associated volume, and the local concentration pj of the suspension 

defined as the ratio of the volume oj to the specific volume of a given particle. Denot- 

ing any of the above quantities by cpj, we can write 

Cpj = (Cpj) -i_ Tj’, (Cpj’) Z 0 (0.1) 

where the first term is the value of Cpj averaged over the ensemble and the second term 

the pseudoturbulent pulsation of Cpj. In addition, we introduce (as in p]) quantities of 

the form CpjO which are the result of averaging Cpj over the nominal distributions charac- 

terizing the probability of realization of various values of ~(11, pj, pi for a fixed par- 
ticle velocity w(J). 

We have 
‘Pj’ y (Cpj) + cPj”t (Vj) E (vj”>f, (vj”)f ES 0 (0.2) 

where ( )s denotes averaging over the distribution function of the particles of the jth 

fraction over the velocities fj. 

We assume on the basis of physical considerations that the dynamic variables (Cpj) 

pertaining to the motion of the fluid donot depend on the number j. In addition, we 
assume that the statistical properties of the ratio of oj to the specific volume are the 

same for all i. 
Then (V(J1) = (V), (pj) zI (P), pj = p = (p> + p’ (0.3) 

The second of the above assumptions is generally invalid for various regular particle 

packings. However, the pulsations of the suspended particles enable us to regard their 
real packing as the result of averaging over various types of regular packings ,, so that the 

assumption appears to be quite plausible. In any case, it is inevitable in the context of 

the statistical theory based on the notion of chaotic packing of the particles in the suspen- 

sion at any given instant. 

1. The kinetic equrtionr. The kinetic equation for the particles of an arbi- 
trary j th fraction is readily derivable of the method of p]. We have 

(1.1) 

The solution fj of this equation is some “average” distribution in the sense that aver- 
aging over the nominal distributions n] is assumed to have been carried out. The quan- 
tity F$” is the total force exerted by the fluid stream and external fields on a particle 



290 1~. A. Buevich 

of the j th fraction averaged according to (0.2) ; A(j) is some unknown tensor describing 
diffusion in the velocity space n-31. The last term in the right side of (1.1) represents 
the change in fj due to direct particle collisions. 

For simplicity we assume that the role of direct collisions in the transfer of momentum 

and energy between particles is relatively small, i. e. that particle interaction occurs 
largely by way of the fluid filling the gaps between particles. Close analysis shows that 

this assumption is valid for a very broad class of practically important disperse systems, 
provided their concentration is not too close to the concentration of a densely-packed 

particle system. The collision term in Eq. (1.1) for such disperse systems (which can be 
aptly called “collisionless”) can be approximated by zero, which simplifies the subse- 
quent computations considerably. 

The expression for the forces F$’ can be written as 

Fg) = m .g + F!j’ 
3 1 1 

(F(j)) = m.g + (Fij’) 
P 3 7 

F(j)’ _- Fpl’ 
P (1.2) 

where g is the acceleration of the external mass field. The “dissipative” component of 
force (1.2) has been omitted by virtue of our neglect of direct collisions fl]. The force 

of interaction of the particles with the ambient fluid F(j) can be written as 

F!j’=.--.~J-xm.[P,jK1(P) d(j) .(i) 

2 3,jr 1 13 u(j) + P2jK2 (p) u(W) + E (p) -. 
dt + 

t 
&,(i) 

+ ri [ ‘I (P)yg- ,=t’ + 1, 
I 

-co 

U(j) -- v(j) - w(i) (1.3) 

with the aid of (0.2). 

Here Pli, fizj , rj are some coefficients which depend on the physical properties of 
the jth fraction and of the fluid ; Ki, E, q are functions which allow for the restriction 

of flow past particles in the system. Differentiation over time in(1.3)is carried out along 
the particle trajectory. Experimental values of Ki are given in [4] and elsewhere ; the 
specific form of these functions and of the coefficients $ij, Tj has no direct bearing on 

our study. We note that expression (1.3) differs from the analogous expression of IJ] only 
by a term quadratic in the relative velocity u(i). 

Making use of relations (0. l), (0.3), we obtain from (1.3) the following expressions 

p] valid to within second-order terms in the pseudoturbulent variables: 

(J$‘) z - ~j~ -t xjlnj (PIi [Kl (U(j)) -t ~ :P’u”“) -{- 

(d))(p)] + pzi[K2 ((dj))(dj)) + ((uf)dj)') u(j)') -1 

+ +- (u(j)‘2 - (I$ u(i)‘)2) &I) + d% ((u(j)) (p’uq _j 

+. (uw) cp’ (&) u(j)‘))) + --&ds(dj)) (u(j): (P’~)] + 

D(j) (,,(3?) 

+E Dt (1.4) 
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(1.5) 
$ Psi 

C 
KS ((dfi) u(j)’ f (I$’ II (u(j))) $ 

d(J) ,W 
dt 

d(J) .tj) ’ 

dt 

The expression for the force F$” occurring in (1.1) can be obtained as in n]. We 
begin by expressing the quantity cpj” in (0.2) in the form q$” = s(j) [cp] w(j)‘, where 

s(J) [rp] is some unknown tensor quantity. In the case of the pseudoturbulent pulsations 
occurring in the right side of relation (1.5) we have 

d ,,W 
- VpW’ zzz SW [ - Vp] w(j)‘, 3 = &9 

c-0 (1.6) 

The force FiIJo can therefore be expressed as the sum of (FF) as given by (1.2). 

(1.4) and the quantity F’,j) as given by (1.5), where all of the pseudoturbulent variables 
have been replaced by linear functions of w(J)’ in accordance with formulas (1.6). 

2. The mao and momentum oon#ervrtfon aquation8. Thedynamic 
equations for the j th particle fraction considered in the continuum approximation are 

readily derivable from (1.1) by means of standard operations. As in [l] we obtain the 

equations 
D(J’ (p> 

J 
Dt 

_j_ @ji?$ z.z 0, 
i=s 

D(j) .+j)) ap(P)W 
dj (plj Dt = - dr + T (F;‘) (2.1) 

p(p)@ = dj (P)~ (w(j)‘*wW> 

The quantity (P)~ is the average volume particle concentration of the f th fraction 

in the system (not to be confused with the pf in (0.3) which characterizes the concentra- 
tion of the suspension near the particle). 

The dynamic equations for the fluid phase are also obtainable by our old method D] 
from the Navier-Stokes equations for the motion of the fluid in the gaps between parti- 

cles. Making use of relations (0.3). we obtain the equations _. 

do [&((I -(P>) (v>) -t&v - (P>)(v)* <e) + $1 = (2.2) 

(& + (v) $)(p) - (I- (p)) y- 2 = 0, 
lY (P>. 

q = - 2 #3’v(~~‘> 
j=l 

apcf) N (P). 
=- -_ 

ar 
F -t p0 + k ce) + d$$ zl $ (p’et”‘) + 
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N (p> . 
+ -+$$ (e)(p’“)) + do (1 - (p)) g - 2 $ (F:'), S = S ((P>) (cant*) 

j=l 3 

N 

PC’) = do (1 - (p)) z; 2 (v(~)‘*\w) + q* <v: -j- <v>* q] 
j=l 

Here P = PO 5' b> is the effective viscosity of the fluid filtered through the particle 
lattice. 

It is clear that as in the theory of monodisperse suspensions we must express all of the 

pseudoturbulence characteristics occurring in Eqs. (2.1) and (2.2) in terms of the dyna- 

mic variables defining the average motion of the suspension and the physical parameters 
of the two phases. 

3. The pteudoturbulent structure of the 8urpention. Random pseudo- 
turbulent variables satisfy stochastic equations obtainable from the equations of particle 

motion and the Navier-Stokes equations for the fluid in the same way as the correspond- 
ing equations of fl]. Neglecting the ratios of the pseudoturbulence scales to the mean- 
motion scales, we can write these equations in the form 

d(j) ,W’ F(j)’ (j(i) &j)’ 
mj T== 1, 

-+;u 
dt 

(j)\ a p’ - (1 -- <p)) -&-- z 0 , ar 1 
N, (P) 

do(l _(p>) ($_; (,(j1>2)~(ii’ ; - +-+-pos%& &$Fi’)’ (3.‘) 

As in pl], we have made use of a coordinate system attached to an isolated particle. 
It is convenient to express all of the random pseudoturbulent functions in the form of 

Fourier-Stieltjes integrals. System (3.1) then becomes a system of linear algebraic equa- 

tions for the spectral measures of these random functions which makes it possible to ex- 

press all the spectral measures in terms of the single spectral measure CL@’ of the ran- 
dom process p’. It is then easy to determine all of the spectral densities characterizing 
the wave structure of the pseudoturbulence in the form 

(3.2) 

where q(j)‘, q(j) are arbitrary pseudoturbulent variables, d,$) , and dZ!$’ are their 
spectral measures, and Lg.‘,+ are some known functions of the frequency o and wave vec- 

tor k of the pseudoturbulent pulsations, as well as of various dynamic derivatives and 

physical parameters. The expressions for Lt,) + obtainable in elementary fashion from 
the aforementioned system of algebraic equations will not be written out here. 

In the case of a monodisperse particle suspension the expression for YyL is easy to 
obtain with the aid of the generalized diffusion equation formulated in [S]. With a poly- 
disperse suspension the equation is replaced by ,lr such equations for each of the fractions. 
It is easy to show that the mean-square concentration fluctuation <lP> of such a suspen- 
sion consists additively of the quantities (p’2)j characterizing the concentration fluctu- 
ations of the various fractions; the dynamic behavior of each such quantity is defined 
by the corresponding generalized diffusion equation. 
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Recalling that the velocities (w@> are generally different for different j and omit- 

ting the intervening operations 1 we obtain (as in & 51) an expression for the spectral 
density p* of the process, 

Here Dfi’ is the tensor of effective pseudoturbulent diffusion of the particles of the 

jth fraction, and the quantities mP, Pt koj are defined in Q, 51. Equations (3.3) close 
the system of relations (3.2). We note that Eqs. (3.1) and (3.3) were w*ritten out under 
the assumption that the derivatives of the dynamic variables are negligible compared 
with the corresponding derivatives of the pseudoturbulent variables ; this corresponds to 
the zeroth approximation with respect to the ratios of the pseudoturbulence and mean- 

motion scales. We can therefore hope to derermine dynamic equations (2.1). (2.2) with 
the same degree of accuracy. 

The ~eudoturbulence characteristics of second order in the pseudot~buIent variables, 

as well as the various correlation functions, are readily derivable from (3.2) and (3.3) 

by ordinary inte~ation over the frequencies m and wave space IL Precisely such charac- 
teristics are employed in the dynamic equations of p]. 

We note, however, that the pseudoturbulent quantities computed from (3.2) with the 
aid of (3.3) and the forml~la for Q, p,p given in D. 5] apply, strictly speaking, only to 
states in which the derivatives of all the dynamic variables {the average velocities of 

the various particle fractions and fluid, the average concentration of the suspension, and 

the mean pressure gradient) are equal exactly to zero (by analogy with the kinetic the- 
ory, we call them “equilibrium” states). 

This is because the formulas for CD:\ of (3.3) and for QP p of fl. 5] are strictly valid 
for such states only. The equilibrium ~eudoturbu~en~e characteristics computed on the 

basis of the above results will be identified by a zero subscript in order to avoid confu- 
sion. We note that any eq~~~~briurn pseudoturbulent characteristic C@ ~$j)~)~ can be 
expressed as same known function of the dynamic variables and physical parameters by 

integrating relations (3.2) over w and k and then expressing a11 of the pseudoturbulent 

quantities occurring in definitions (1.3) according to the rules discussed in Il. 51. 
The state of a suspension can differ markedly from the corresponding equilibrium state 

in real flows. The method of determining the quantities ($j)‘@‘) from known 
\‘c@’ $(j!‘),, is discussed in [S] on the basis of the assumption that the equilibrium for- 

mula for 4),, p is also applicable under nonequilibrium conditions. In this case the 

equations for various psendot~bu~ent characteristics are obtainable (in principle) by the 
same method as the equations for the correlation functions in the theory of turbulence_ 
For obvious reasons this model cannot be considered particularly successful. Let us now 

consider a much simpler model. 
Specifically, we introduce the scalars R(ll [fp, $J, the vectors R’j) 19, $1 and the 

tensors R(j) [is, 91 such that in the equilibrium state we have 
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($1 q(jY)o _ /I(.?) [ (p, Q] tr (w(J’*,~(j)‘)~ z I{(j) [(r, q] Ho(j) 

(CpW q)!jY)o _: R(j) [(p, $1 (w(j)‘*w(i)‘), (3.4) 

(rgW’*#j)‘>, _ R(j) [cp, $1 (I&)‘*~(3’>0 

where the primed quantities in the left sides are arbitrary scalar or vector pseudoturbu- 

lent variables. It is clear that the quantities just introduced can be regarded as some 

known functions of the dynamic variables and physical parameters. 

It is possible in principle to solve kinetic equation (1.1) for each fraction in a non- 
equilibrium state and then to obtain the pseudoturbulent means 

Let us assume that all the other means in the nonequilibrium state have been expressed 
in terms of (w(j)’ * v@‘) by relations similar to (3.4). We then say that the quantities 

R(j) occurring in such relations coincide with the H(j) of (3.4). In fact, (3.4) is valid 
provided the system is in a state of local equilibrium, i. e. in a state of equilibrium on 
the level of an individual particle and its immediate neighbors. However, all of the 
equations considered in the present paper are in fact obtainable by averaging over a time 

interval At satisfying the inequalities z < At < T, where z and T are the internal 

and external pseudoturbulence scales [l, 51. The time Z is essentially the characteristic 

time required for the establishment of local equilibrium in the system. This means that 
all of the nonequilibrium states under investigation in the present paper have the property 

of local equilibrium. We note that the notion of local equilibrium as used here has the 
same meaning as in nonequilibrium statistical mechanics in general. For example, in the 
kinetic theory of gases the state of local equilibrium corresponds simply to molecular 

chaos. 

4. The equationa of pseudoturb,u!ent particle energy transfer, 
The equations for the quantities @’ = (z.#) ” and their sums over i for particles of 
different fractions are obtainable in the same way as dynamic equations (2.1). However, 
in contrast to the dynamic equations these equations contain terms which depend on the 

unknowns F$’ and A(j) occurring in kinetic equations (1.1). We shall determine the 
Iatter quantities by comparing the results obtained in Sect. 3 with certain results which 

follow from Eqs. (1.1) in the equilibrium state. 
From relations of the form (3.4) written out in the nonequilibrium state we readily 

obtain the system of linear algebraic equations 
(‘p(j)‘*w(i)‘) == s(j) [cp] (u-0)’ * w(j)‘), s(j) [v] z R(j) [T,w] (5.1) 

This allows us to assume that the quantities s (2 [cp] are also known, and thus to express 
the force F$‘O solely in terms of the dynamic variables and physical parameters accord- 

ing to the method described at the end of Sect. 1. 
We can determine the components of the tensor A(j) by the method proposed in Cl]. 

Let us consider kinetic equation (1.1) written for the equilibrium state when the deriva- 
tives of the dynamic variables (and therefore the derivatives of fi which depends impli- 
citly on t and r ) are identically equal to zero, 

(4.2) 
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The tensor A(j) is symmetric by definition, so that we can solve Eq. (4.2) in the prin- 
cipal axes of the tensor A(J) without limiting generality. Denoting the corresponding 
eigenvalues of the tensor A(j) by A?, we seek the solution of (4.2) in the “quasi-Max- 

(4.3) 

where nj is the countable concentration of particles of the i th fraction. Furthermore, the 
general expression for the force Fp’ is of the form 

$7’“: = G(j) _ ,<j) ,<j)’ 
P-Z,1 11 (4.4) 

(without summation over i), where G(j) does not depend on w(“’ and where c?) are 

known functions. Substituting (4.3) and (4.4) into Eq. (4.2) and separating out terms 
containing differing powers of w(j)’ we obtain the following equations : 

G(j) = 0, B!j’ _ 
,!A 

z 
z 

ZAG) 
i 

The first of these equations clearly coincides with the equation of conservation of 

momentum of the j th fraction written out for the equilibrium state; the second equation 
enables us to express the components of the tensor A?' in terms of the components of 

the tensor B!,” in expression (4.3). The function fj in (4.3) enables us to compute the 
mean-square values of the pseudoturbulent particle velocities in various directions. 

Making use of the second equation of (4.5). we obtain the following equations for the 
unknowns ~1 O’* 1 - I ~ ,!j) (@‘2jo 

1 1 z 1 tr AM = c(j)($) (4.6) 
The right sides of these equations contain functions of the dynamic variables and phy- 

sical parameters which can be computed in accordance with the results of Sect. 3. 

The distribution functions for the nonequilibrium state in the zeroth approximation in 

the derivatives of the dynamic variables can also be found in the “quasi-Maxwellian” 
form 

WI 

Making use of relations (4.3). (4.4). (4.6) and (4.7). we obtain from Eqs. (1.1) the 
following transfer equations for the quantities I$’ which are the mean squares of the 

pulsation velocities of the particles of the j th fraction in the i th direction : 

D(j) ((p) j O!')) z - 
Dt 

(4.8) 

Summing (4.8) over i, we also obtain the transfer equation for e(j), 

D(j) (ql) je(‘)) 
3 

LA 

This equation has exactly the same meaning as the heat conduction equation in gas 

hydrodynamics. Equations (4.8) clearly close the system of dynamic equations (2.1) , 
(2.2). In fact, all of the pseudoturbulent characteristics occurring in the latter equations 
can be expressed (in accordance with (3.4). (3.5). (4.7)) in terms of the dynamic vari- 

ables and the quantities Bi 
7 Y + 4 unknowns i e tt,t(” 

. We therefore have 7N + 4 equations for determining 
i , . . : ‘ree components of the velocity (v>, the pressure (p) , 3N 

quantities 6Y), 3N velocities (u$)> , and N mean concentrations of the various fractions 

<o) j* 
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The s@ificance of the abwe a~~rox~rnat~on is analogous to that of the Euler appro- 
ximation in the kinetic theory af gasses and single-phase hydrodynamics, It is apt to 
retain the same terminilogy for the disperse systems under consideration here. 

6. Surpsnrions with a continuous particle distribution. In order 
to pass from suspensions characterized by a discrete set of different fractions to suspen- 

sions with a euntinuous particle distribution over some parameter h (or over several 

parameters denoted nominally by A) , we introduce the particle distribution function 
4 (h) normalized to the total volume concentration {Q> of the suspension, i.e. 

where integration must be carried out over the entire range of variation of h. The cor- 
respondence between the continuous and the discrete description considered above can 

be established with the aid of the relation 

‘up: j -;TI ~ (hjf hh (xl) 

where we assume that the coefficients prj, par, rj as well as all tlic other ,iuantities 

previously accompanied by the index j are some functions of I,, The continuous desrip- 

tion is thus ohtainable from the discrete one by taking the limit Ah --t 0, where h plays 

the role of a parameter (or parameters) in the resulting relations, 
With allowance for these changes the stochastic equations for v’. w’, p’ and p’ retain 

their form (3, L), whiie instead of (3.3) we have 

M(h, h’) =[o-k ((w: (h’) - (w) (h))]‘+ [II (IL’) kk--o’Q-1 (A’) t.rT’l(h’)]’ (i.3) 

where {p) is expressed in rerms of tp (h) in accordance with (5, I). Making use of (5,3), 

we can readily compute all the equilibrium pseudoturbulence characteristics in the old 

way. In this case they also depend on the unknown function 4 (A). 
The dynamic equations for the VGspersed phase become 

The dynamic equations for the fluid phase retain their form f2, Zf ii we set 

Relations (5.2) readily yield the new forms of Eqs. (4,8) and (4.9). Thus, in the case 
of s~qxnsio~s with a continuous partiete distribution we have a total of twelve HWtiOIX 
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(eight equations of conservation of mass and momentum of the phases, three transfer 

equations, and relation (5.1) ) for twelve unknowns ((p) , (p), the three quantities 8,, 
$ (A) , and six velocities). This is one more equation than in the case of monodisperse 
suspension. However, the system of equations for polydisperse suspension is much more 
complex than that for a monodisperse suspension, since the equations themselves are 
integrodifferential. 

In conclusion we note that there is generally asize dispersion of particles of equal 

density ; however, in certain applications (ore separation in streams, separation in a pseu- 

doliquefied layer, etc. ) it is necessary to consider suspensions dispersed not only over size, 
but over particle density as well. 
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We show tilat the law of conservation of angular momentum in a flow of an incompressi- 
ble Stokes fluid can, in a particular case, be reduced to the equation of vortex diffusion. 

We perform the analysis using two different representations, the Eulerian and the Lagran- 

gian, of the kinetic moment of a fluid particle. We discuss the relevant concepts of the 
moments of inertia and give an equation for the rate of change of the Lagrangian moment 
of inertia of a fluid particle. 

For the classical (nonpolar) media the law of conservation of the angular momentum 

can only lead to the condition of symmetry of the stress tensor n], and nontrivial results 
can be expected only for the media with microstructure C2]. However when we consider 
the volumes whose characteristic dimensions are comparable with the scale of the velo- 
city gradient field, then the balance of the angular momentum will necessarily include 
the kinetic moment and the mean vertical motion. Moreover it appears, that in the case 
of a nonpolar (e. g. Stokes’) fluid, the first terms of the Taylor expansion of the kinetic 
moment of a particle which are not identically equal to zero, are defined by a vortex 
motion. We shall show that the kinetic moment of the elementary (from the point of 


